Engineer

Portfolio

Inoh Jung / 정인오

inoh.jung@gmail.com

1. OCR implementation, multi-class classification (Coursera)

data set sample


training set prediction (1)


training set prediction (2)

  • https://github.com/ino-jeong/Portfolio/tree/master/OCR(multiclass_classification)
  • Training set accuracy : 94.86%
  • Octave(추천) 또는 Matlab에서 main.m 실행
  • 구현환경 : GNU Octave 3.8, Mac OS
  • Coursera Machine Learning 과정 구현 과제
  • Training set : 20 X 20 pixel, grayscale, 5000 examples of handwritten digits
  • Model : Multi-class classification
  • Cost function 및 Training / Prediction 과정 구현 :
    • - lrCostFunction.m
      - oneVsAll.m
      - predictOneVsAll.m

    2. OCR implementation, neural-net (Coursera)

    training set prediction (1)


    training set prediction (2)

  • https://github.com/ino-jeong/Portfolio/tree/master/OCR(neural_net)
  • Training set accuracy : 95~96% (up to random initialization)
  • Octave(추천) 또는 Matlab에서 main.m 실행
  • 구현환경 : GNU Octave 3.8, Mac OS
  • Coursera Machine Learning 과정 구현 과제
  • Training set : 20 X 20 pixel, grayscale, 5000 examples of handwritten digits (1번과 동일 set)
  • Model : Neural Net, 3 layer (1 hidden layer)
  • Layer 구성 및 backpropagation 구현 :
    • - sigmoidGradient.m
      - nnCostFunction.m

    3. MNIST with CNN implementation

    test set prediction (1)


    test set prediction (2)

  • https://github.com/ino-jeong/Portfolio/tree/master/MNIST_CNN
  • Test set accuracy : 98.39% ~ 98.67% (if number of epoch is increased)
  • 구현환경 : Python 3.5 with Tensorflow 1.1, Mac OS
  • CNN을 통한 MNIST classifier 구현 (하기 reference 참조) :
  • Training set : as per MNIST specification (28 X 28 pixel, grayscale)
  • Model : Convolution Neural Network :
      - 1st layer :
        convolution with 3x3 filter, 1 channel in / 32 channel out → ReLu → Max-Pooling with 2x2 filter
      - 2nd layer :
        convolution with 3x3 filter, 32 channel in / 64 channel out → ReLu → Max-Pooling with 2x2 filter
      - 3rd later :
        Fully connected layer

  • 4. K-means clustering (Coursera)

    before k-means clustering
    (same color means they treated as same group)

    after 8-iteration of k-means
    (same color means they treated as same group)


  • https://github.com/ino-jeong/Portfolio/tree/master/k_means
  • Octave(추천) 또는 Matlab에서 main.m 실행
  • Basic k-means clustering implementation
  • 구현환경 : GNU Octave 3.8, Mac OS
  • Coursera Machine Learning 과정 구현 과제
  • Model : K-means
  • K-means clustering algorithm 구현 (finding 3 clusters in examples) :
      - computeCentroids.m
      - findClosestCentroids.m
      - kMeansInitCentroids.m

  • 5. Soft Robotic Gripper Fabrication

    3d printed gripper mold


    casted silicone gripper


    attached on robotic arm


    robot grip test


  • Robot arm :
      - (Kuka) KR 6 R900 sixx KR AGILUS
  • Soft robotic gripper :
      - Material : Ecoflex 00-30 silicone
      - Dimension : W 135mm x L 135mm x H 10 mm
  • Air powered
  • Mold : 3d printed (by ultimaker), pla
  • Office paper used for inelastic side (inner side) constrainer



  • Inoh Jung

    inoh.jung@gmail.com